Reflections on the Athlete Brain Health Foundation’s Inaugural Congress October 17-19, 2019 in Park City, Utah

By Jessica Schwartz PT, DPT, CSCS

Hundreds of clinician-researchers from all over the world gathered in Park City, Utah for the Athlete Brain Health Foundation’s Inaugural Congress to move interdisciplinary concussion and brain injury care for our patients forward.

Do you want to know what takes courage?

Throwing your first International Congress for the Athlete Brain Health Foundation. 

I’m so proud to know Jeffrey Kutcher MD and Caralyn Baxter PT, DPT of the Sports Neurology Clinic and the deep work that the Executive Committee put together for this 3-day event in Park City, Utah. A special shout out to Courtney and Amy who were running the behind the scenes of this Congress so smoothly. 

The focus and energy here has been a forward thinking, collaborative, and low ego environment. 

I mentioned the importance of psychological safety in my 15 minute portion in our 90 minute group presentation on mental health with our wonderful working group comprised of a psychologist, physician, athletic trainer, and attorney. Psychological safety is so important for group think, team dynamics, and making teams work. In layman’s terms, it’s stating that you won’t get embarrassed or rejected for saying a wrong thing. 

Doctors Kutcher, Giza, and Baxter are clinician-researchers who embody the “GTSD” mentality in psychological safe collaborative research environments. 

I’ve been to and spoken at many conferences and this is one of a few where the mission to sincerely gather and move the concussion world forward is palpable and feels tangible. 

The present day world we live in as healthcare professionals hasn’t supported the majority of our concussion patient population well. This is partially due to the fact we have over 43 working definitions of the word concussion and only one of them is evidence based. 

How can interdisciplinary teams try to collaborate and treat if we’re not all speaking the same language?

The beauty of this International Congress is that more than 50% of the world’s best were in the same room ready to listen, learn, and move the wheel forward to make a better patient experience. 

We didn’t harp on the basic science of concussion for the majority of this conference. The old adage at most concussion conferences sounds like the following “we don’t have enough research here and we need to continue doing research.” 

The approach of this conference was to break a group of interdisciplinary clinicians and professionals including lawyers, athletic trainers, and patients into small working groups to formulate questions that can be solved and opening up the floor for clinician researchers and patients who dedicate their lives to helping one of the most underserved, underfunded, and under appreciated groups in need…brain Injured patients. 

It’s been a true pleasure to meet old and new clinician researchers who I’ve read their collaborative work as I’ve developed my passion and working knowledge in this field for nearly half of my professional career.

It’s also been a delight to meet concussion thrivers and TBI survivors living with persistent symptoms who learn to cope and advocate for themselves and future patients through incredible resiliency and grit. 

It takes courage to show up. It takes even more courage to speak up. 

Do you need to fill your bucket professionally? Work with one brain injured patient that you’ve collaboratively rehabbed back to life and the gratitude and reward will, without a doubt, be ten-fold. 

If you’re a clinician or future clinician who is on the fence in your career decision process, I encourage you to walk on over to the “wild side” of concussion and Brian Injury. When you meet many of us, you’ll find out that most of us were touched by a personal experience with brain injury ranging from family members, ones own injury, or being exposed early in ones career realizing how in need of support this population of patient is world wide. 

Thank you for your time and attention reading this blog post. 

*This will be updated throughout the weekend of October 19, 2019*

Curious to know more about the Athlete Brain Health Foundation? Read below. 

The ABHF is a 501C3 non profit whose mission is to maximize the neurological health of all future, current, and former athletes of all types and levels via objective collation and application of science, clinical experience and the patient perspective.

Athletic pursuits are central to both human development and life-long health. Over recent years, the potential of brain injury and other deleterious neurological effects as the result of physical trauma have come to significantly alter human behavior, resulting in less and less participation in sports and other physical activities.

The risks of concussion, persistent symptoms after concussion, and long-term brain dysfunction as the result of physical impacts are real. At the same time, there are very clear negative neurological effects from not being physically active and athletically engaged. Understanding and applying these two truths in a careful, comprehensive, and critical manner is necessary to maximize brain health. Unfortunately, doing so isn’t easy. Previous efforts to provide clinical and scientific consensus around these issues have either been limited in scope or have lacked objectivity.

ICfABH Logo.png

Concussion

The Future of Concussion

and Medical Education

Original artwork by Jessica Schwartz Rendered by Chris Freeman

Original artwork by Jessica Schwartz Rendered by Chris Freeman

Jessica B. Schwartz PT, DPT, CSCS

There is a paucity of quality concussion education in entry level, residency, and post-professional medical education.

Why?

Because there is no evidence based medicine for concussion.

A bold statement as I introduce what I believe to be the worlds first yearlong, multidisciplinary, and post-professional concussion education program for clinicians.

Let me start with a story:

It was the week I got promoted to junior partner of my company.

The week I took a deep breath for the first time in my life and said “OK Schwartz…You’ve arrived.”

I was surrounded by people whom I genuinely cared about, professionally and personally, and I felt like my nose to the grindstone personality the last 13 years of formal didactic education, business mentorship, and the chase to this finish line had come to fruition.

That was the week I was hit by a car.

That was the week my life changed forever.

On October 3, 2013, I went from being Dr. Schwartz to patient 237427 in a NYC Emergency Department getting rolled through a CT Scan.

It’s a difficult journey being on “the other side of healthcare.”

I was that patient rolling to CT with my MD Calculator in hand who was able to recite the Canadian CT Head Rules like a proud elementary school student who had just learned her speaking part for the school play.

Physical therapy was my craft. I was mastering the craft of treating the patient as person, developing my patient rapport tools, building a wonderful international referral network, and understanding the nuances of running multiple successful businesses.

I loved every minute of it. The more I learned the more I wanted to learn.

A one week medical leave of absence turned into 10+ hours of rehabilitation a week for a year.

How could an injury so seemingly benign change my life forever?

What We Know:

In 1997, the CDC reported 300,000 concussions in the United States. In 2016, the CDC estimates are 1.6-3.8 million sports related concussions based off of the most recent 2006-2010 data.

I strongly believe that these numbers continue to be greatly underestimated based off of the heterogenous nature of this injury, underreporting[1-4], ~25% of people not seeking emergency department or other medical care[5], and lack of an agreed upon definition and consensus on what the injury is in the literature[6-8].

We know that approximately 20-30% of patients develop persistent symptoms crossing over into the post concussion syndrome threshold each year with ranges from 5-58% in the literature[9-11].

If we look at ~30% of all concussions crossing over into the persistent symptom category, that is 1.14 million people in the United States based off of the current data alone.

Remember, I continue to believe that this data continues to be grossly underestimated.

The Gaps:

We know that TBI is grossly underfunded yet it is a major cause of death and disability in the United States, contributing to about 30% of all injury deaths[12].

NIH TBI v Cancer Funding

According to the National Institutes of Health (NIH), Cancer research received $5.6 Billion in 2015. Comparatively and up from $88 million in 2015, TBI is estimated to receive just $91 million in 2016[13]. Approximately 5.6 million people are living with the long terms effects of TBI and 138 deaths occur per day[12] amounting to ~50,000 deaths per year in the US. In 2015, there were 1,658,370 new cancer cases diagnosed and 589,430 cancer deaths in the US[14].

Why compare cancer and TBI? Because cancer has made huge gains by breaking down cancer. We don’t treat cancer. We treat large cell non-Hodgkin lymphoma. We need to do the same in the concussion community.

Scientifically, we must start with agreeing upon a universal definition of concussion, mTBI, and TBI. From there we need to be able to break down the injury appropriately based off of neurophysiological changes and injury to specific areas of the brain. While these are lofty goals, I also don’t see this being tangible in the near future nor is it clinically and functionally relevant to the patient seeking care in front of us today.

The above statistics indicate that we are doing much better at saving patients lives from severe cases of TBI vs cancer; however, the true burden exists with TBI survivors suffering from the lasting effects of what a TBI does to a person as a whole being.

We know that 100% of all neuroprotection phase III studies are negative, less than 5% of New Medical Entities (NME) in clinical assessment make it to FDA approval, and 100% of all Phase III trials in TBI are negative.

This means that there have been zero phase three clinical trials in TBI that have moved on to completion, there are zero drugs for TBI, and that TBI and concussion are strictly a clinical diagnosis.

We have to do better. And we can.

Medical Education and Healthcare:

Daniel Goleman discusses the key concept of “iatrogenic suffering” in medicine. This is an added anguish by medical personnel delivering insensitive messages that can often engender more emotional suffering than the actual illness itself[15].

Historically in medicine if we do not understand an injury or disease pathway, we prescribe rest or send the patient to a psychologist e.g. syphillis, low back pain, B12 deficiency, cardiac issues in women, etc.

We’ve missed the mark in the concussion community as medical providers. Over the last few decades, we’ve allowed the medico-legal literature to get ahead of us in the medical community.

It wasn’t until 1989, a neuropsychologist by the name of Jeffrey Barth, was part of the first group to suggest that cognitive testing in preseason athletes may have some value due to concussive injuries presenting lasting effects.

We’ve enabled a culture of “I got my bell rung” to prevail and have not addressed concussion from a systems level until recently.

I’ve heard time and time again that “We can’t teach it because there’s no empirical evidence”.

Nonsense.

As I was being well-cared for by my team of physicians and clinicians, I continued to do my best to take a step back and look at the inner workings of the healthcare team, system and educational offerings that are made available to all clinicians from physician to PT et al.

When I learned that 2015 was the first year that neurology residencies were receiving formal didactic education in concussion within the ‘Behavioral Neurology’ section springing from the work and advocacy of the Sports Neurology Section of the American Academy of Neurology, I knew there had to be something done.

A change.

A change in the global architecture of medicine with respect to the concussion patient of today.

A concussive injury is an all hands on deck injury. It can often require a team of clinicians to identify, treat, and manage this patient population.

Leading Causes of TBI

Concussion patients port of access to the clinician of today is infinite. It can range from the athletic trainer, the emergency department physician, the primary care physician, the pediatrician, the nurse practitioner, the physician assistant, the school nurse, psychologist, physical therapist, occupational therapist, speech therapist, and anyone who has direct access to the patient of today.

I emphatically deliver this message when I speak publicly: it is not a matter of if you treat concussion patients. It is a matter of when you will encounter, treat, and/or refer a concussion patient.

A concussion is not a broken bone. That’s easy. We know normal tissue healing parameters in healthy populations.

A concussion is a neurophysiologic injury that can affect all domains of a person’s life from somatic, cognitive, emotional, vestibular, sleep, and behavior often with non-specific answers to the all important patient question of “when will I get better?”

It is gut-wrenching as a clinician to have the self awareness to look into a patient’s eyes and say “I don’t know.” It is even more painful as a patient to be completely unaware of if you will ever get better when you are being cared for by one of the best clinicians in the world.

We can do better. And we will. Here’s how.

Healthcare Teams:

Long gone are the days of the one physician model, yet we seem to be in a conundrum when it comes to communication and teamwork in medicine.

The Doctor Sir Luke_Fildes_(1891)

The Doctor Sir Luke Fildes (1891) https://commons.wikimedia.org/wiki/File:The_Doctor_Luke_Fildes_crop.jpg

In the fall of 2014, I had the privilege to virtually attend the International College of Residency Education’s (ICRE) opening plenary delivered by rhetorician scientist Dr. Lorelei Lingard on Collective Competence: Adapting our concept of competence to healthcare teams[16].

During this time, I was finalizing my concussion rehabilitation and Dr. Lingard’s words helped facilitate my eureka moment of how I can aide in providing a solution to this medical world of specialists all attempting to treat the same poorly defined and heterogenous injury.

Summatively, she states that individual competence does not equal good healthcare.

She elaborates reviewing a case scenario describing the maze of disconnected care episodes that the patient of today is experiencing.

Dr. Lingard states that we need to “evaluate in situ, broaden focus beyond individual actions to include inter-actions among individuals, capture the ‘cracks’ between the care episodes, and consider interactions among elements of the system, not just among people…Competence is a way of ‘seeing’ that both directs and deflects our attention. The cracks between care episodes, experts cultivating collective competence ‘know how the system usually fails in this situation, and plans accordingly.’ Our attention is directed towards individual competence and deflected from collective competence. We need both[16].”

My role is to facilitate collective competence in the concussion community.

Let’s think about the concussion patient of today.

A concussed individual can experience any one of the following myriad of symptoms all at once or over a period of time [See Chart].

Concussion Signs and Symptoms

Each of these symptoms can be managed by individual specialists that may or may not cohesively integrate their treatment models with a co-treating clinician.

Concussion identification, treatment, management, and having the self awareness to know when and whom to refer appropriately can be a complex team model and clinical algorithm.

Each concussion case is unique and treatment models are 100% situationally dependent.

Kenneth Burke, an American literary theorist, once said that “every way of seeing is a way of not seeing.”

We can’t simply “treat the headache” or “treat the balance issue.” Treating the concussion patient of today involves a complex series of evaluations across all domains in order to systematically identify injury deficits in order to appropriately make the decision of what to treat, when to treat it, and when to refer appropriately.

If you treat together, you must learn together.

Here’s how.

Rapport and Clinician Synchronicity:

“To feel with, stirs us to act for[15].”

Get in-synch with your concussion patients.

These patients often feel very disconnected to the medical community. Patient stories of seeking care from 5+ medical providers until they “find their person” in healthcare is not uncommon.

Rapport is key to successful patient, provider and caregiver interactions. When people are in rapport, their physiology actually attunes. Robert Rosenthal published a landmark article revealing the central tenets of “relationship magic,” the recipe for rapport. This only exists when three elements are present: mutual attention, shared positive feeling, and a well-coordinated nonverbal duet. As these three emerge cohesively, we spark rapport[15].

This is how lifelong patient-provider and provider-provider relationships are formed.

Nature is based upon energy and timing. Basic science has identified symbiosis throughout the natural world ranging from the firing of an action potential to the marvelous making of what happens between winter and spring.

Concussion is an injury of asynchronous firings at a cellular level which accumulate amounting to a functional dysfunction with ones self and environment.

Original Concept by Jessica Schwartz; Rendered by Chris Freeman

Original Concept by Jessica Schwartz; Rendered by Chris Freeman

We need to learn how to adapt to the needs of our patients who carry a host of pre and post morbid medical conditions and circumstances presenting with the complexities that the heterogenous nature of a concussive injury presents.

The Program:

The Evidence In Motion Concussion Certificate Program is committed to educating the post-professional multidisciplinary clinician of today in concussion identification, treatment, and management by fostering a rehabilitative team approach.

This 12-month program provides the latest clinical conversations, evidence-based guidelines, and consensus statements while integrating real world experiences from patients, providers, and caregivers who have navigated the complex healthcare network of today.

Content delivery is both interactive and dynamic, exposing the student to some of the most influential clinicians in the concussion community coupled with the unique learning experience of provider to provider, patient to provider, and caregiver to provider storytelling.

By fostering a rehabilitative team approach, the EIM Concussion Certification hopes to facilitate collective competence across the healthcare continuum in order to better triage, treat, and appropriately refer the concussion patient of any age from acute to chronic stages.

This year long multidisciplinary concussion certificate sets the learner up for success utilizing an asynchronous and synchronous online learning environment for the busy post professional of today.

The in-person weekend intensive reviews the psychomotor properties of the concussion evaluation, treatment, management, and referral options based off of the providers scope of practice during the 12 month didactic education experience.

As a pre-requisite to the program, each post-professional student will undergo a therapeutic neuroscience education course. As we embark on a multidisciplinary educational journey together, I sincerely believe that we all speak the same language of medicine; however, we bring many different dialects to the clinical table.

Current best-evidence shows that therapeutic neuroscience education improves pain ratings, function, pain catastrophization, physical movement and cost of healthcare utilization.

I will utilize the TNE course to cohesively meld the post-professional multidisciplinary EIM Concussion students in language, compassion, and competency of the therapeutic neuroscience evaluation in order to jumpstart their experience of learning together in a new environment. 

A few months before physician Kenneth Schwartz died, he stated that “Quiet acts of humanity have felt more healing than the high dose of radiation and chemotherapy that hold the hope of a cure. While I do not believe that hope and comfort alone can overcome cancer, it certainly made a huge difference to me[15].”

I hope to create kind, compassionate, and clinically efficient clinicians who foster rapport with patients, interdisciplinary colleagues, and across disciplines.

Care for the concussion patient. Care for him/her together. And care for him/her well.

The Faculty:

I’ve been fortunate enough to have returned back to patient care and have surrounded myself with some of the brightest and most dedicated faculty in the world in their respected specialties.

Over the last year, the energy that I’ve felt from this group of men and women has been palpable. I am honored everyday to have worked with and continue to collaborate with each and everyone of these passionate clinicians.

What do they all have in common? I systematically screened all interviewees for passion, high IQ, high EQ, and low ego who have the self awareness to take a step back from themselves and look at the big picture of clinical care.

We have a tall order in front of us and I know we’re here to do our best to help clinicians of today put our best foot forward to educate each other and our communities of coaches, parents, spouses, teachers, caregivers, and loved ones on the multifaceted injury that concussion can present itself as to the provider and patient of today.

Why Story?:

Paul Zak, a neuroeconomist, eloquently stated “Stories are powerful because they transport us into other people’s worlds but, in doing that, they change the way our brains work and potentially change our brain chemistry — and that’s what it means to be a social creature[17].”

Storytelling allows us to step back, view, and listen from an aerial and reflective standpoint while creating the neural groundwork of patient exposure by connecting to the story, the provider, the caregiver, and the patient.

Schwartz Rounds were invented by an ill physician who also experienced the dichotomy of both doctor and patient. His purpose was to facilitate understanding of how the patient perceives their own illness and treatment by deploying empathy and building rapport[15].

If we have no empirical data, then we need to learn from each other. I believe by deeply listening to each other, patients, and caregivers fosters an excellent way to change the way in which we begin to shift the global architecture of medicine with respect to the concussion patient of today.

How can we help and treat a mutual patient if we don’t sincerely understand what each of us can collectively do for one another in the best interest of the patient.

Story allows us to experience the injury through the eyes of experienced providers, patients, and caregivers who have navigated the complex healthcare system of today.

We need to learn from each other.

When we learn together we can treat together.

Welcome to the beginning of the Evidence in Motion Concussion Certificate Program.

“I did then what I knew how to do. Now that I know better, I do better.” ~Maya Angelou

#Concussion.

Bibliography

1. Register-Mihalik, J.K., et al., Using theory to understand high school aged athletes’ intentions to report sport-related concussion: implications for concussion education initiatives. Brain Inj, 2013. 27(7-8): p. 878-86.

2. Llewellyn, T., et al., Concussion Reporting Rates at the Conclusion of an Intercollegiate Athletic Career. Clin J Sport Med, 2014. 24: p. 76-79.

3. Kroshus, E., et al., Concussion reporting intention: a valuable metric for predicting reporting behavior and evaluating concussion education. Clin J Sport Med, 2015. 25(3): p. 243-7.

4. Kroshus, E., et al., Norms, athletic identity, and concussion symptom under-reporting among male collegiate ice hockey players: a prospective cohort study. Ann Behav Med, 2015. 49(1): p. 95-103.

5. Sosin, D.M., J.E. Sniezek, and D.J. Thurman, Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj, 1996. 10(1): p. 47-54.

6. Menon, D.K., et al., Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil, 2010. 91(11): p. 1637-40.

7. Quarrie, K.L. and I.R. Murphy, Towards an operational definition of sports concussion: identifying a limitation in the 2012 Zurich consensus statement and suggesting solutions. Br J Sports Med, 2014. 48(22): p. 1589-91.

8. Rose, S.C., A.N. Fischer, and G.L. Heyer, How long is too long? The lack of consensus regarding the post-concussion syndrome diagnosis. Brain Inj, 2015: p. 1-6.

9. JJ, B., et al., Epidemiology and predictors of post-concussive syndrome after minor head injury in an emergency population. Brain Inj, 1999. 13(3): p. 173-189.

10. Iverson, G., Outcome from mild traumatic brain injury. Curr Opin Psychiatry, 2005. 18(3): p. 301-317.

11. Babcock, L., et al., Predicting postconcussion syndrome after mild traumatic brain injury in children and adolescents who present to the emergency department. JAMA Pediatr, 2013. 167(2): p. 156-61.

12. CDC. Traumatic Brain Injury in the United States: Fact Sheet. 2016  January 11, 2016].

13. NIH. Estimates of Funding for Various Research, Condition, and Disease Categories (RCDC). 2015  [cited 2016; Available from: https://report.nih.gov/categorical_spending.aspx.

14. ACA. Cancer Facts & Figures 2015. 2016  [cited 2016 January 11, 2016].

15. Goleman, D., Social Intelligence: The New Science of Human Relationships. Kindle ed. 2006: Random House.

16. Lingard, L., Collective Competence: Adapting Our Concept of Competence to Healthcare Teams. 2014.

17. Zak, P. The Neurochemistry of Empathy, Storytelling, and the Dramatic Arc, Animated. 2012  [cited 2016; Available from: https://www.brainpickings.org/2012/10/03/paul-zak-kirby-ferguson-storytelling/.

post

Physician LBP Paradigm Shift and the DPT

Low Back Pain: Physician Paradigm Shifts and the Doctor of Physical Therapy 

TWITTER_BANNER_520x260v5

Dr. Jessica B. Schwartz PT, DPT, CSCS

What do the common cold and low back pain (LBP) have in common? They are the top 2 symptomatic reasons for primary care visits in the United States (US) [1, 2]. 

In 1998, total US health care costs for LBP were approximately $90 billion [3, 4]. Musculoskeletal (MSK) conditions account for roughly 25% of patient complaints in the primary care setting [5, 6].

In the emergency department (ED), MSK dysfunction accounts for 20% of all chief complaints with 2.7 million visits specifically devoted to LBP [7]. In fact, MSK conditions rank second only to respiratory illness with respect to prevalence of most common presentations in the ED[8].

The intent of this article is to identify global systematic weaknesses in medical education while discussing implementation of best practices as it pertains to low back pain intervention.

My hopes are that by exposing the physician to potential clinical decision and behavioral paradigm shifts that can be immediately implemented, we can reduce cost, increase efficiency, and make our patients feel better quicker.

One thing is for sure: I bet you didn’t learn this in Medical School…

II. Physician Confidence and Competence of MSK Conditions:

It has been recently cited that newly graduated medical students and residents lack the clinical knowledge and confidence necessary to care for patients with MSK injuries. Deficiencies have been shown at all levels of training from medical student to attending [8-11].

Approximately 50% of family practice physicians feel inadequately trained in MSK medicine [8, 12]. There have been similar numbers reported amongst the emergency physician with marked deficiencies in musculoskeletal education ranging from trainees to attending staff[8].

As exposure to MSK conditions increase and physician confidence remains low, we need to address this dilemma head on.

Identification and efforts to improve quality of MSK exposure and future physician education is presently being reviewed and developed[11].

What happens to present day practice in the mean time?

Allow me to take you down a paradigm shift in thinking for the present day physician as it pertains to patient access and prescriptive intervention.

III. Knowledge Translation Gaps:

Clinical Prediction Guidelines (CPGs) have proven to be an excellent tool to meld clinically relevant interdisciplinary conversation via individually competent clinicians.

CPG’s have been copiously produced in an effort to guide a broad range of clinicians along a mutually agreed upon diagnostic pathway. In conjunction with the Choosing Wisely campaign, CPGs combined with 2 of the 3 central tenets of Evidence Based Medicine, doctors should be prescribing fiscally responsible and safe interventions for our patients.

Unfortunately, this isn’t always the case.

There continues to be overuse of imaging in the emergency and primary care setting despite evidence based recommendations from the American College of Physicians, American Pain Society[4, 13], and the Choosing Wisely Campaign[14].

These organizations call for lumbar spine imaging only for patients who have severe or progressive neurologic deficits or signs and symptoms that suggest a serious or specific underlying condition[13].

Another example of physician knowledge translation failure occurs with the Ottawa Foot and Ankle Rules (OFARs). In a 2014 study of emergency physician application of the OFARs, there was no statistical evidence that application of the OFARs decreases the number of imaging orders.  In fact 58 of the 60 patients that qualified under the OFARs were imaged [15]. This observation suggests that even when clinicians are being observed and instructed to use clinical decision rules, their evaluation bias tends toward recommendations for testing.

Unlike the foot and ankle complex, pathoanatomic diagnoses in the lumbar spine is often more detrimental to clinically relevant patient care than not.

Excessive spinal imaging can lead to downstream pathways that can lead to instilling fear of the unknown or “too-much known” into the patient, unnecessary invasive interventions, time lost from work, familial, and social life, and the fiscal burden that all of the above places on government, third-party and private payers.

Evidence of false rates of herniated discs are shown on computerized tomography (CT) scans[16], MRI[17], and myelography[18] in 20% to 76% of persons sans radicular pain[19].

Savage et al[20] reported that 32% of their asymptomatic subjects had “abnormal” lumbar spines (evidence of disc degeneration, disc bulging or protrusion, facet hypertrophy, or nerve root compression) and only 47% of their subjects who were experiencing low back pain had an abnormality identified[19, 20].

Pathoanatomic abnormalities are so common in the asymptomatic individual it should be viewed as a normal sign of aging with present day knowledge of MSK advanced imaging.

As it pertains to the geriatric population, a cross- sectional study revealed[17] 36% of asymptomatic persons aged 60 years or older had a herniated disc, 21% had spinal stenosis, and more than 90% had a degenerated or bulging disc [4, 17].

With 22% of the population about to cross over into the geriatric cohort, are we going to continue to expose our patients to undue radiation, opioids and costly-clinically irrelevant tests?

IV: Knowledge Translation Gaps due to…?

Minimal exposure to musculoskeletal education in medical school has previously been highlighted as a significant issue in both North America and the United Kingdom[8, 21-27].

Over the years, my physician friends and colleagues, international and domestic, have congruently agreed upon one common theme amongst their MD/DO medical education: a paucity of MSK learning opportunities during their formative years in medical school and residency training[11].

I’m fortunate to surround myself with people who are as equally as enthusiastic and curious with respect to medical learning.

My small conversational sample size over the years finally took me to the literature.

V. The Literature:

As the geriatric population continues to grow exponentially, there is an $848 billion annual fiscal estimate for treatment, diagnosis, and lost wage amounting to ~7.7% of the gross domestic product for MSK chief complaints [11, 28].

In 2030, the pediatric and geriatric population will account for 21% and 22% of our population due to the baby boomer surge[29].

Think about this for a moment. There will be more people 65 years and older than 17 years old and under.

As the geriatric population continues to stay active and educated, MSK conditions of all age cohorts are going to skyrocket. More severe forms of LBP increase with age with overall prevalence increasing until ages 60-65[19, 30, 31].

In a 2010 national study on LBP and diagnostic testing in the ED, imaging was performed in nearly 50% of all LBP patients and opioids were administered to nearly 2/3’s of the sample[7].

Emergency Medicine physician Judith Tintenalli, stated that we need increased “efforts to change consumer behaviors” with respect to patient access and referral to the ED. It has been cited that up to 43% of direct access ED visits are deemed unnecessary. When referred by a PCP, up to 44% of those referrals were also deemed inappropriate. [32] 

A modification of the Tintenalli statement would be we need increased efforts to change consumer and clinician behaviors. Clearly patients and providers are both lacking awareness of who should be utilizing ED skilled clinical services for MSK conditions.

With rates of chronicity related to an episode of LBP increasing [2], there needs to be a significant shift in intervention and clinical decision making for patients of all ages.

Change in behavior, intervention, and clinical decision making?

What else is there besides the physician ordered image, oral medication, invasive procedure and surgery?

Snarky @DPT2Go Wonka

VI. The role of the Non-Physician Doctor in Modern Day MSK Management:

Experienced doctors of physical therapy have higher levels of knowledge in managing musculoskeletal conditions than all physician specialists except for orthopedists [6]. This includes medical students, physician interns, residents, and attending physicians.

Open Access: www.biomedcentral.com/1471-2474/6/32

Childs J, et al A description of physical therapists’ knowledge in managing musculoskeletal conditions. Open Access: www.biomedcentral.com/1471-2474/6/32

I know that piece of information was not imparted on you in medical school.

Allow me to provide some high-yield clinical pearls that will hopefully expand your breadth and depth of knowledge as it pertains to low back pain and your patients.

Who is the present day Doctor of Physical Therapy (DPT)?

Simply stated, DPTs are body mechanics. Our sole purpose is to make people move and interact with their environment in the most energy efficient, symptom free, safe, and functional way.

DPTs are skilled doctoral degree level clinicians with core knowledge of all systems to allow us to appropriately screen and differentially diagnose all patients that we come in contact with for evaluation and treatment. Similar to the traditional medical model, we have intensive board specialities in cardiology, orthopedics, sport, geriatrics, pediatrics, neurology and hand. Residency and fellowship are also becoming more prevalent with ~2,500 DPT’s trained in residency or fellowship from 1999-2013[33].

Accessed: www.abptrfe.org/Home.aspx

Accessed: www.abptrfe.org/Home.aspx

As of January 2015, all 50 states will have direct access to DPT’s. This means that a prescription is no longer required to access our care for the MSK patient.

Image: http://webreprints.djreprints.com/1715540469703.html

Image: http://webreprints.djreprints.com/1715540469703.html

Direct access privileges have been present in the US Army for over 40 years. In fact, Army DPT’s are able to order imaging and administer medication as necessary.

A retrospective analysis of 472, 013 patient visits at 25 military healthcare sites, 45.1% of the visits were determined to be patients with direct access and without physician referral. No adverse events were determined from either physical therapy diagnosis or management [34].

What does direct access mean for the civilian population?

Simply stated: autonomy.

This means that patients can have instant access to a DPT as soon as they have MSK pain or dysfunction. We’ve accepted the role of greater diagnostic responsibility by achieving the clinical rigors of a doctoral education; this autonomy doesn’t mean we stop communicating with the medical community. DPT’s have worked hard to achieve autonomous practice. Working and communicating with the physician, physician assistant (PA-C), and Nurse Practitioner (NP) are still priority as our profession tends to lead the way in collective competence as we learn to adapt to today’s healthcare systems.

What’s new on the low back pain rehabilitation front?

Accessing LBP patients early is critical to improved outcomes and decreased economic, social, psychological and familial burdens. Early physical therapy (within 14 days of primary care) was associated with decreased use of advanced imaging, additional physician visits, lumbar surgery, lumbar injections, and opioid medications, as compared to delayed physical therapy [2, 35].

LBP is not a homogenous entity.

Pathoanatomic diagnoses are no longer the gold standard for diagnosis and treatment of patients with acute, subacute or chronic LBP. Factually, this is why many LBP studies failed to achieve anything substantial, measurable and remarkable over the last two decades (see false positive and true negative rates above).

Presently, there has been some excellent work done by Fritz[36-38], Childs[6, 39], and Delitto[19] working on sub-grouping LBP patients. If you choose to do any interdisciplinary reading these are the articles you should be reading to expand your knowledge base.

The development of classification systems has been identified as a priority among researchers in the primary care management of patients with low back pain[19, 40].

An entirely separate article can be devoted to sub-groups and treatment based classification systems; however, for immediate knowledge translation integration, I’ve identified four of the subgroups for you below.

Treatment based classification systems use an in depth history, mechanism of injury, and physical examination. They include 1. mobilization, 2. specific exercise, 3. immobilization, and 4. traction subgroups [19].

We know that LBP is not a homogenous entity, therefore, we need to identify, triage, and treat these patients differently depending on where they are along the spectrum of their dysfunction and pain episode.

Every subspecialty in healthcare is going to come in contact with a LBP patient due to the incidence, prevalence, and potential debilitating nature of the injury.

Now is the time to think differently. Now is the time to stop putting the square peg in the round hole.

In a landmark study by Daker-White et al in 1999[41],  a randomized controlled trial was done comparing care of patients solely seen by the physician v. the PT.  Entitled, Shifting boundaries of doctors and physiotherapists in orthopaedic outpatient departments, 244 patients were seen by a post-fellowship physician and 237 patients were seen by a physical therapist.

The results?

Patient centered outcomes in this RCT favored the PT.

Orthopedic physical therapy specialists are as effective as post-fellowship junior staff and clinical assistant orthopaedic surgeons in the initial assessment and management of new referrals to outpatient orthopaedic departments, and generate lower initial direct hospital costs. [41]

Lower costs, increased clinically relevant outcomes, and competent clinicians expediting patient care?

Image-1 (3)

Ladies and gentleman, welcome to the future of healthcare.

VII. Possible solutions:

There is a scarcity of dually trained specialty board certified, residency, and/or fellowship trained doctors of physical therapy in the US; however, we do exist and there are more and more physical therapists pursuing doctoral level degrees, speciality certification, and advanced training every year.

There needs to be a healthy interaction, rapport building and conversation amongst the physician and DPT in the #MedEd community. We need your presence for prescriptive intervention for the biochemistry needs and red flags that can occur with this patient population just as much as there is a need for a paradigm shift in prescriptive, existing clinical decision making, and intervention as it pertains to the LBP patient.

Doctors of Physical Therapy have slowly been introduced to the emergency medicine team and thus far with great success[42]. As this trend continues to grow, a more immediate solution needs to occur.

All 50 states in the US will have direct access to physical therapy services in January of 2015. Now is the time to refer that patient directly to the orthopedic physical therapy office (with or without prescription) so we can decrease unnecessary ED visits leading to opioid prescriptions, imaging, and other prescriptive screening tools leading to costly downstream clinically irrelevant interventions.

Use us. No, really. Use us.

Let us safely screen and differential this cohort of patients. Most of the time they need reassurance that they will be ok and we can provide them with the screening tools to differentially diagnose and refer out to the proper physician as needed.

Most important to the patient, we can make them feel better-if not physically, psychologically usually within the first visit in order to decrease fear-avoidance behaviors[37].

Providing patient education on positioning for comfort, relief and functional positioning for their activities of daily living while utilizing our manual therapy skills to massage, mobilize, manipulate, therapeutically exercise, or stretch this population of patient is key to successful clinically relevant outcomes.

Remember, the LBP patient is not a homogenous entity and neither is their interventional prescription. Let us identify their sub-group based off of treatment based classifications and safely intervene right away (ideally within the first two weeks).

I hope this review provided some new and thought provoking ideas that will hopefully plant the seed for you to share this blog with a fellow colleague, look further in to the literature, and expand the breadth and depth of your MSK knowledge base.

My name is Dr. Jessica Schwartz. I am a residency trained Doctor of Physical Therapy. How can I assist you and your patient’s needs today?

Quick Points:

1. Physician, PA-C, and NP colleagues #ThinkDifferent and take a pause in your clinical decision thought processes when encountering your next low back pain patient. Do you know a PT that you trust and can directly refer to? Now you have excellent conversational tools to engage in a conversation in an interdisciplinary way to best suit the patients needs.

2. PT’s in the United States will have direct access in all 50 states starting January 2015. This means a patient does not need a prescription to access our services. This can be for an acute, subacute, and chronic condition. Allow us to differentially screen and refer out as needed. See the American Physical Therapy Association (APTA) Overview

3. Use this article to expand the breadth and depth of your MSK knowledge base when speaking with fellow colleagues. Think beyond the opioid, radiographic image, and the “wait and see approach”. Take action within the first 14 days of an acute episode and be participative in your patients intervention

4. To my international colleagues, please use this article to engage in conversation. I’ve already learned so much from interdisciplinary conversation after publishing this article. Question medicine…always. Engagement is how we learn and continue to grow. Cheers to you!

Keep Calm @DPT2Go

Bibliography

1. Hart, L.G., R.A. Deyo, and D.C. Cherkin, Physician Office Visits for Low Back Pain: Frequency, Clinical Evaluation, and Treatment Patterns from a U.S. National Survey. Spine, 1995. 20(1): p. 11-19.

2. Childs, J.D., T.W. Flynn, and R.S. Wainner, Low back pain: do the right thing and do it now. J Orthop Sports Phys Ther, 2012. 42(4): p. 296-9.

3. Luo, X., et al., Estimates and Patterns of Direct Health Care Expenditures Among Individuals With Back Pain in the United States. Spine, 2004. 29(1): p. 79-86.

4. Chou, R., et al., Diagnostic Imaging for Low Back Pain: Advice for High-Value Health Care From the American College of Physicians. Ann Intern Med, 2011. 154: p. 181-189.

5. Pinney, S.J. and W.D. Regan, Educating Medical Students About Musculoskeletal Problems. JBJS, 2001. 83-A(9): p. 1317-1320.

6. Childs, J.D., et al., A description of physical therapists’ knowledge in managing musculoskeletal conditions. BMC Musculoskelet Disord, 2005. 6: p. 32.

7. Friedman, B.W., et al., Diagnostic testing and treatment of low back pain in United States emergency departments: a national perspective. Spine (Phila Pa 1976), 2010. 35(24): p. E1406-11.

8. Comer, G.C., E. Liang, and J.A. Bishop, Lack of Proficiency in Musculoskeletal Medicine Among Emergency Medicine Physicians. J Orthop Trauma, 2014. 28: p. e85-e87.

9. Freedman, K.B. and J. Bernstein, The Adequecy of Medical School Education in Musculoskeletal Medicine. JBJS, 1998. 80-A(10): p. 1421-1427.

10. Freedman, K.B. and J. Bernstein, Educational Deficiencies in Musculoskeletal Medicine. J Bone Joint Surg Am, 2002. 84-A(4): p. 604-608.

11. Truntzer, J., et al., Musculoskeletal education: an assessment of the clinical confidence of medical students. Perspect Med Educ, 2014. 3(3): p. 238-44.

12. Sneiderman, C., Orthopedic practice and training of family physicians: a survey of 302 North Carolina practitioners. J Fam Pract, 1977. 4: p. 267–350.

13. Chou, R., et al., Diagnosis and Treatment of Low Back Pain: A Joint Clinical Practice Guideline from the American College of Physicians and the American Pain Society. Ann Intern Med, 2007. 147: p. 478-491.

14. Choosing Wisely: An Initiative of the ABIM Foundation.  [cited 2014 December 21, 2014]; Available from: http://choosingwisely.org/.

15. Ashurst, J.V., et al., Effect of triage-based use of the Ottawa foot and ankle rules on the number of orders for radiographic imaging. J Am Osteopath Assoc, 2014. 114(12): p. 890-7.

16. Wiesel, S.W., et al., A study of computer-assisted tomography. I. The incidence of positive CAT scans in an asymptomatic group of patients. Spine, 1984. 9: p. 549-551.

17. Boden, S.D., et al., Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. JBJS, 1990. 72(3): p. 403-408.

18. Baliki, M.N., et al., Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci, 2006. 26(47): p. 12165-73.

19. Delitto, A., et al., Low Back Pain Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability, and Health from the Orthopaedic Section of the American Physical Therapy Association. Journal of Orthopaedic & Sports Physical Therapy, 2012. 42(4): p. A1-A57.

20. Savage, R.A., G.H. Whitehouse, and N. Roberts, The relationship between the magnetic resonance imaging appearance of the lumbar spine and low back pain, age and occupation in males. Eur Spine J, 1997. 6(106-114).

21. Matzin, E., et al., Adequacy of Education in Musculoskeletal Medicine. J Bone Joint Surg Am, 2005. 87-A(2): p. 310-314.

22. Lynch, J.R., et al., Important demographic var- iables impact the musculoskeletal knowledge and confidence of academic primary care physicians. J Bone Joint Surg Am, 2006. 88(7): p. 1589-1595.

23. Day, C.S., et al., Musculoskeletal medicine: an assess- ment of the attitudes and knowledge of medical students at Harvard Medical School. Acad Med, 2007. 82: p. 452-457.

24. Queally, J.M., et al., Deficiencies in the education of musculoskeletal medicine in Ireland. Ir J Med Sci, 2008. 177(2): p. 99-105.

25. Al-Nammari, S.S., B.K. James, and M. Ramachandran, The inadequacy of musculoskeletal knowledge after foundation training in the United Kingdom. JBJS, 2009. 91-B(11): p. 1413-1418.

26. Menon, J. and D.K. Patro, Undergraduate orthopedic education: Is it adequate? Indian J Orthop, 2009. 43(1): p. 82-86.

27. Bernstein, J., G.H. Garcia, and J.L. Guevara, Progress Report: the prevalence of required medical school instruction in musculoskeletal medicine at decade’s end. Clin Orthop Relat Res, 2011. 469: p. 895-897.

28. Facts in Brief.  [cited 2014 December 21, 2014]; Available from: http://www.boneandjointburden.org/highlights/FactsinBrief.pdf.

29. Hooyman, N.R. and H. Asuman Kiyak, Social Gerontology: A Multidisciplinary Perspective. Seventh ed. 2005, United States of America: Pearson.

30. Lawrence, R.C., et al., Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum, 1998. 41: p. 778-799.

31. Loney, P.L. and P.W. Stratford, The prevalence of low back pain in adults: a methodological review of the literature. Phys Ther, 1999. 79(4): p. 384-396.

32. Tintinalli, J.E., Emergency Medicine. JAMA, 1996. 275(23): p. 1804-5.

33. ABPTRFE: American Board of Physical Therapy Residency and Fellowship Education.  December 21, 2014]; Available from: http://www.abptrfe.org/home.aspx.

34. Deyle, G.D., Direct access physical therapy and diagnostic responsibility: the risk-to-benefit ratio. J Orthop Sports Phys Ther, 2006. 36(9): p. 632-4.

35. Fritz, J.M., et al., Primary care referral of patients with low back pain to physical therapy: impact on future health care utilization and costs. Spine (Phila Pa 1976), 2012. 37(25): p. 2114-21.

36. Fritz, J.M. and R.S. Wainner, Examining Diagnostic Tests: An Evidence-Based Perspective. Phys Ther, 2001. 81(9): p. 1546-1564.

37. Fritz, J.M. and S.Z. George, Identifying Psychosocial Variables in Patients with Acute Work-Related Low Back Pain: The Importance of Fear-Avoidance Beliefs. Phys Ther, 2002. 82(10): p. 973-983.

38. Fritz, J.M., J.A. Cleland, and J.D. Childs, Subgrouping patients with low back pain: evolution of a classification approach to physical therapy. J Orthop Sports Phys Ther, 2007. 37(6): p. 290-302.

39. Childs, J.D., et al., A Clinical Prediction Rule To Identify Patients with Low Back Pain Most Likely To Benefit from Spinal Manipulation: A Validation Stud. Ann Intern Med, 2004. 141(12): p. 920-930.

40. Borkan, J.M., et al., A report from the Second International Forum for Primary Care Research on Low Back Pain. Reexamining priorities. Spine, 1998. 23(18): p. 1992-1996.

41. Daker-White, G., et al., A randomised controlled trial. Shifting boundaries of doctors and physiotherapists in orthopaedic outpatient departments. J Epidemiol Community Health, 1999. 53: p. 643-650.

42. Plummer, L., et al., Physical Therapist Practice in the Emergency Department Observation Unit: A Descriptive Study. Phys Ther, 2014.

post

Welcome To PT2Go!

cropped-WEB_BANNER_1250x250v5_TAGLINE_02.png

Greetings Folks! 

My name is Jessica Schwartz and I’d like to take a moment to introduce you to PT2Go!

You can find the mission statement here; but first, I’d like to share how PT2Go has organically developed over the last several years. 

Conceptually, I thought of this intellectual space of PT2Go as I entered Orthopaedic Residency in 2010. During residency, I learned to truly appreciate the multidisciplinary communication, candor and enthusiasm across all aspects of medicine. After 10 years of formal education and 3 degrees later, I can honestly say that I was never a great self-directed learner.

During residency, I learned how to reason and think differently. In my first 3 months of intensive learning and direct supervised practice, I had become a completely different clinician than I was the day I walked across the stage at graduation and donned that famous doctoral hood. Despite the lack of sleep, buckets of coffee, and stress of having one too many things on my plate at any given time it was an honor and a joy to have learned and grown clinically with my class of residents. 

After graduation from residency, I had a dilemma. I didn’t have someone telling me what to learn, how to learn, and there was no standing on the firing block for weekly peer review and feedback.

I had become incredibly efficient at work and I had rejuvenated my long lost social life with family and friends, but there was something missing. The work, life…learning balance. Where would I fit the time in for learning? How would I do it on my own? How would I do it efficiently?

THIS is where PT2Go comes in. 

My goal is to promote the field of Physical Therapy in a collaborative and multidisciplinary way. I hope that by sharing some of my own self-directed learning experiences: the good, the bad, and the ugly (and believe you me I’m talking ugly!) I can assist in fostering interdisciplinary connections and conversations similar to the connections I made during my time as a resident. 

Here is what you can expect*:

    • • High Yield Evidenced Based information that you can attain on-the-go
    • • International and domestic contributors providing thought provoking and energetic guest pieces 
    • • Opinion (Op-Ed) articles that may push the envelope, foster passionate conversation, and encourage thinking outside of the box
    • • Tips on how to use and integrate Social Media and Medicine (#SoMe) for the Millennial and Generation X Learner
    • • A series on my own Post-Concussive-Syndrome experience. The Dichotomy of The Doctor Becoming The Patient: A Shared Experience of Personal Moments with an Evidenced Based Twist
    • • Concussion Story: A collaborative space for survivors and health care professionals to gain insight into the lives of their patients
    • • Links to Clinical Prediction Guidelines and tips on how to access the information we need in the clinic in real time
    • • A holistic approach to food and nutrition in medicine: taking care of ourselves, food and environmental responsibility, and how it relates to our patients 
    • • Collaborative Case Studies

And much, much, more… 

So cheers to you for coming on this self-directed learning experience with me. I hope to share my passion and authentic curiosity for medicine as well as facilitate passionate conversation with the intention of creating better clinicians and self-directed learners all around the world. 

Enthusiastically,

Jess

Note*: Initial 3-5 blog postings will be primarily related to Concussion

PS-  As promised, I did say Evidenced Based right? My first blog post is written is in a story based format. Here are some links establishing the power of storytelling in medicine and business:

    1. Calman, K. (2001). “A study of storytelling, humour  and learning in medicine.” Clin Med 1: 227-229.
    2. Becker, K. A. and K. Freberg (2014). “Medical student storytelling on an institutional blog: A case study analysis.” Med Teach 36(5): 415-421.
    3. Schwartz, M. R. (2012). “Storytelling in the digital world: achieving higher-level learning objectives.” Nurse Educ 37(6): 248-251.
    4. Stephens, G., et al. (2010). “Speaker–listener neural coupling underlies successful communication.” Proc Natl Acad Sci U S A. 107(32): 14425-14430.
    5. Scott, S., et al. (2013). “Protocol for a systematic review of the use of narrative storytelling and visual-arts-based approaches as knowledge translation tools in healthcare.” Syst Rev 2: 1-7.
    6. Hensel, W. and T. Rasco (1992). “Storytelling as a method for teaching values and attitudes.” Acad Med 67(8): 500-504.
    7. Diagnosis Goes Low Tech By Dinitia Smith Published October 11, 2003. Accessed May 8, 2014.  http://www.nytimes.com/2003/10/11/arts/diagnosis-goes-low-tech.html
    8. Lead with a Story: A Guide to Crafting Business Narratives That Captivate, Convince, and Inspire Truth by Paul Smith. Accessed May 8, 2014.  http://www.leadwithastory.com/
    9. The Power of Story Telling as seen in PT In Motion Published July 7, 2011. Accessed May 8, 2014. http://stephaniestephens.com/wp-content/uploads/2011/07/0312_PTM_Storytelling_MedRes4.pdf
    10. George, D. R., et al. (2014). “How a creative storytelling intervention can improve medical student attitude towards persons with dementia: A mixed methods study.” Dementia (London) 13(3): 318-329.
    11. Cavazza, M. and F. Charles (2013). “Towards Interactive Narrative Medicine.” Stud Health Technol Inform 184: 59-65.